
 

Journal of Engineering and Fundamentals  

Vol. 2(1), pp. 38-53, June , 2015   

Available online at http://www.tjef.net 

ISSN: 2149-0325 

http://dx.doi.org/10.17530/jef.15.06.2.1 

 

 

Free and Forced Vibration Analyses of Hyperbolic Cooling Tower Shell 

Using Harmonic Solid Ring Finite Elements 

 

Ali I. KARAKAS 
Karadeniz Technical University, Department of Civil Engineering, Trabzon, Turkey 

 

Ayse T. DALOGLU
*
 

Karadeniz Technical University, Department of Civil Engineering, Trabzon, Turkey 
Article history 

Received:  

24.03.2015 

 

Received in revised form:  
01.06.2015 

 

Accepted: 

01.06.2015 

This paper discusses free and forced vibration responses of 

hyperbolic cooling tower shell which is one of the complex real life 

applications of axisymmetric structures. 9-noded harmonic solid 

ring finite element is used in the numerical model of the cooling 

tower. Physically a three-dimensional cooling tower problem is 

reduced to a two dimensional one by expressing earthquake loading 

in the form of Fourier series for a single harmonic with the help of 

harmonic elements. Therefore, the complete solution for the 

problem is obtained simply for a single load component that makes 

the model computationally much more efficient. A computer 

program is coded in Matlab for the purpose and the results obtained 

in the study are verified with the results available in the literature. 

A parametric study is also performed for the variations in shell 

curvature of the tower. The time history analysis method is used for 

the dynamic response of the cooling tower shell. Acceleration 

records of Düzce earthquake is used in the study and the results are 

presented in tabular and graphical formats comparatively for 

varying shell curvature. It can be concluded that circumferential 

mode number and shell curvature have significant effects on the 

dynamic responses of cooling towers. 
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1.  Introduction 

One of the thin-walled slender 

structures in civil engineering is reinforced 

concrete cooling tower which is the essential 

component of thermal and nuclear power 

stations to reduce the temperature of the 

cooling water-circuit. Such shell structures 

are exposed to various loadings such as self-

weight, wind and earthquake loads. In the 

design process of such structures free 

vibration characteristics and seismic 

responses play an important role especially 

when they are constructed around the region 

prone to severe earthquakes. Therefore, it is 

especially necessary and urgent to know the 

seismic behavior of the huge towers under 

severe earthquake attacks. The loads applied 

to the shell wall of a cooling tower due to 

design earthquake can be determined by the 

response spectrum or time history analysis. 

The former and the later method require a 

free vibration analysis and ground motion 

records, respectively. 

The dynamic analysis of cooling tower 

structures is studied by researchers who are 

aware of the importance of earthquake 

loading on such important structures in high 

seismic zones. For example,  Hashish and 

Abu-Sitta [1], Prasahanth and Sayeed [2] and 

Nasir et al. [3] , Sam-Young and Sang-Yun 

[4,5] and Calladine [6]  presented the effects 

of some tower geometrical parameters on the 

frequency response of cooling towers fixed 

or simply supported at the shell base. 

Moreover, Tande and Chougule [7] and 

Kulkarni and Kulkarni [8] carried out static 

and dynamic analyses of hyperbolic cooling 

towers fixed at shell base. In all of these 

studies three-dimensional isotropic shell 

elements were used to model the shell wall 

since they consider the problem as three 

dimensional in analysis. This approach is 

also a time consuming process since a 

complete dynamic analysis of such structures 

requires very large number of analysis. 

However, in this study with the help of 

harmonic analysis physically three 

dimensional problem is reduced to a two 

dimensional problem. The solution for the 

problem is obtained using 9-noded (Ring9) 

solid quadrilateral ring harmonic elements. 

So the computational effort significantly 

decreases for the structural analysis of 

cooling tower shells. A computer program is 

coded in Matlab for this purpose and results 

obtained are verified with the ones available 

in literature. Later the dynamic analysis of 

hyperbolic cooling tower shells is performed 

under earthquake loading. Free vibration 

analyses are also studied for different 

hyperbolic curvatures. The results are 

presented in graphical and tabular formats. 

2. Harmonic Finite Element Model 

For harmonic model in linear elastic 

analysis, it is possible to demonstrate both 

the loads and the displacement as Fourier 

series expansions in terms of circumferential 

coordinate θ [9]: 
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 (1) 

where m is the circumferential mode 

(harmonic) number and symbols ru , u  and 

zu  indicate the radial, circumferential and  

axial displacement components, respectively, 

see Figure 1. All barred quantities in Eq.(1) 

are amplitudes approximated using the finite 

element method, which are functions of r, z 
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but not of  . This produces a harmonic finite 

element in the (r, z) plane. Single and double 

barred amplitudes represent symmetric           

( ( ) ( )f f   ) and anti-symmetric              

( ( ) ( )f f    ) displacement terms, 

respectively. The amplitudes of the 

displacement components in Eq. (1) can be 

interpolated from nodal amplitudes using the 

shape functions. Figure 1 shows the shape 

and node numbering of the 9-noded ring 

element as well as coordinate system. 

In this study the formulation of symmetric 

part of the harmonic ring finite element is 

presented for the simplicity and a detailed 

explanation and anti-symmetric formulation 

can be found in [10]. The vector of 

displacement field within the element can be 

described in the following form that subscript 

im specifies that amplitude refers to node i  

and harmonic m [11]. 
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where        is the nodal displacement vector 

for the Fourier term (mode) m and [N] is the 

shape functions matrix, which are defined for  

a biquadratic ring element (Ring9) used in 

the present study as written by 
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Figure 1.(a) Displacement components in cylindrical system (b) a solid ring finite element. 

 

The shape function components at each node 

i for the 9-noded ring element in terms of  

 

natural coordinate system are expressed as 

[12]:  
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where ( 1,1,1, 1,1,1,1, 1) and 

( 1, 1,1,1, 1,1,1,1).

i

i





   

   
    

Also, the matrices of harmonic functions for 

harmonic m are:  
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Strains and stresses in an element can also be 

stated in terms of the Fourier series. For a  

Fourier term m, the strain vector in 

cylindrical coordinates can be written as:  
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The strain displacement matrices can be  stated as follows for harmonic m: 
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where mB 
   is the matrix which relates the 

symmetric nodal displacement amplitudes 

with corresponding strains and the matrix  
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and for the i
th

 node, the submatrices are given as: 
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The stress vector for the m
th

 harmonic in the 

cylindrical coordinate system related to the 

strain vector through the constitutive 

equations is given for an isotropic material as 

follows [13]: 

 { } [ ]{ }m mD    (13) 

in which [D] is the material property matrix 

for isotropic materials given by the following 
equation where E modulus of elasticity and v  

is Poisson’s ratio. 
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3.  Finite Element Matrices 

3.1. The element stiffness matrix 

The stiffness matrix of a linear 

system is calculated from the derivation of 

 

 

the strain energy of an axisymmetric solid 

ring element [14].The element strain energy 

is given as:  
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Substituting Eqs. (7) and (18) into Eq. (21) 

for single barred terms the stiffness matrix  

for symmetric terms in Fourier series 

expansion is obtained as:  
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It can be observed that each term in the 

products of  
T
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     will be a function of     

( E , v ) multiplied by either 2cos m  or 
2sin m . Thus, integration over the 

circumferential direction θ can be carried out 

explicitly. The stiffness matrix of a 

quadrilateral ring element can be numerically 

integrated by Gauss quadrature rule which is 

suitable for the finite element applications. 

By taking explicit integrations and using 

numerical integration the stiffness matrices 

for symmetric terms are calculated from the 

following expressions which are used this 

study:
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where k  and l  are the Gauss points 

abscissae whereas kw  and lw  are the 

corresponding integration weights, with 

indices k and l running from 1 to number of 

Gauss points used. Also   ( , )m k lB

   and 

  ( , )m k lB

   mean that these matrices are 

evaluated at Gauss points; likewise for 

( , )k lr   , the radius of the Gauss point and 

( , )k lJ   , the Jacobian determinant that 

maps the area element in global coordinates  

(r, z) to area in the natural coordinates (ξ, η). 

The Gauss points numbers used in this study 

is p=3 for full integration. 

3.2. The element mass matrix 

The consistent mass matrix of a harmonic 

element is calculated from the derivation of 

the kinetic energy as explained in [14]. The 

element mass matrices are obtained for the 

single barred symmetric terms as the 

followings: 
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where ρ is the density of the material.  

4.  Equation of motions 

In the present study free and 

seismically forced vibration behaviors of 

cooling towers are under consideration. 

 

 

Therefore, the equation of motion to be 

solved for free and undamped vibration is: 

 [ ]{ } [ ]{ } 0M u K u    (21) 

where {  } and       are the global 

displacement and acceleration vectors and 

     and      are the system mass and 

stiffness matrices for symmetric terms, 

respectively. By assuming all points in the  

system undergo simple harmonic motion 

with the corresponding natural frequency of 

ω when vibrating a nontrivial solution is 

obtained as [15]: 
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 2det([ ] [ ]) 0K M    (22) 

The solution of Eq. (22) is obtained using QR 

inverse iteration method as explained in [12] 

which produces square of the natural angular 

frequencies of the system. 
 

 

The time dependent undamped equation of 

motion to be solved for seismic inertia forces 

is expressed as [16]:  

 [ ]{ ( )} [ ]{ ( )} [ ]{ ( )}gM u t K u t M u t     (23) 

where { ( )}gu t  is the ground acceleration 

vector at time t. Newmark direct time 

integration method is used for the solution of 

this equation. 

5. Numerical Examples 

Free vibration and seismic responses 

of a hyperbolic cooling tower are 

investigated. Additionally, a parametric study 

is conducted on the cooling tower to 

investigate the effect of meridional curvature 

on the free vibration and seismic responses of 

the tower. For the finite element 

discretization of the tower 9-noded harmonic 

solid ring elements are used.  

5.1 Geometry and Material Properties 

of the Cooling Tower 

The equation of hyperbolic curve of 

the cooling tower is obtained by Eq. (24) 

since the hyperbolic curve has double 

curvature meeting at the throat the 

characteristic dimension is evaluated for the 

upper and lower portions of the curve as 

b=90.07 m and b=68.68 m, by substituting 

the base (dU, ZU) and the top (dH, ZH) 

coordinates in Eq. (25) and (26), respectively 

[17]. Z coordinate is measured from the 

throat level. All dimensions in the R-Z plane 

are specified on the middle surface of the 

shell wall. 

.  

       
           (24) 

where b is calculated as for upper curve 

            
    

    (25) 

and for lower curve.   

            
    

    (26) 

A constant shell-wall thickness of 240 mm, 

and reinforced concrete with Poisson’s ratio 

of 0.2 and elastic modulus of 39 GPa are 

considered for the finite element numerical  

model. The geometry of the hyperbolic 

cooling tower are depicted in Figure 2 and 

the geometrical values are presented in Table 

1.      

 

 Table 1. Geometric details of hyperbolic cooling tower 

Description Symbol Value (m) 

Height above throat level    25.90 

Height below throat level    95.60 

Top diameter    58.04 

Throat diameter    55.78 

Shell base diameter    90.60 

Wall thickness   0.24 
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Figure 2. Geometry of the hyperbolic cooling tower 

The parameter K is the indicator of the 

deviation of the profile from the cylinder 

case (K=1). a is the throat radius. A larger K  

indicates a more marked curvature of the 

meridian. 
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5.2 Earthquake Loading 

Possible loading conditions are dead 

load, wind load, earthquake load, 

temperature variations, construction loads, 

and settlement for a hyperbolic cooling tower 

[17]. In the scope of this study only 

earthquake loads are considered. Ground 

motions generate the earthquake loading on 

hyperbolic cooling towers. The 

circumferential responses become 

axisymmetric (m=0) for uniform vertical 

ground motion and anti-symmetric (m=1) for 

uniform horizontal motion. The magnitude of 

earthquake forces is a function of the mass of  

the shell and the ground acceleration. A time 

history finite element analysis is conducted  

 

for time history acceleration records using 

Newmark direct integration methods. 

Seismic responses of the hyperbolic cooling 

tower are investigated for acceleration-time 

records of Düzce earthquake as plotted in 

Figure 3(a). The Düzce earthquake occurred 

on 12
th

 November, 1999 in Turkey, and had 

the peak accelerations between 5.-10. 

seconds of the record as seen from Figure 

3(a). The maximum acceleration is 3.73 m/s
2
 

in the East-West direction. The time step of 

the record is 0.005s. Since the dynamic 

analysis is time consuming for small time 

steps the duration between 5-10 seconds of 

the complete record is considered shown in 

Figure 3(b).  

 

 

Figure 3. Acceleration-time history record of the Düzce earthquake a) complete b) considered 
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duration 

 

5.3 Free Vibration Analysis of the 

Cooling Tower 

First of all, the finite element model 

is verified with the first five circumferential 

mode and the first lateral mode periods of the  

 

cooling tower obtained by Nasir et al. [3].The 

periods are given in Table 2. The small 

relative errors indicate that the model 

produces acceptable results. 

Table 2. Finite element model verification; comparison of present results with 

those from previously established solutions 

Method of solution 
Periods of vibration (s) 

1 2 3 4 5 6 (lateral) 

Nasir et al. 0.723 0.666 0.662 0.593 0.549 0.294 

Present study 0.729 0.671 0.669 0.597 0.553 0.294 

Relative error (%) 0.82 0.75 1.00 0.67 0.72 0 

 

After verification the natural frequencies and 

associated mode shapes of the tower are 

presented conducting a free vibration 

analysis and a parametric study is conducted 

to investigate the influence of shape 

parameter, K or meridional curvature. A 

convergence study is carried out to determine 

the required number of elements to provide  

 

 

an acceptable level of accuracy in the modal 

analysis. From convergence study 40 Ring9 

elements seemed to be good enough in axial 

direction and one in radial direction for the 

modal analysis of the cooling tower. Natural 

frequencies for circumferential modes of 

m=0,1,2,…,10 and meridional or longitudinal 

modes of n=1,2,…,5 for a fixed shell base 

boundary condition are presented in Table 3.

 

Table 3. Natural frequencies of the cooling tower (n:meridional 

mode, m:circumferential mode) 

m 

Natural frequency (Hz) 

n 

1 2 3 4 5 

0 6,67 8,59 14,29 14,99 15,74 

1 3,40 7,98 12,79 14,13 14,91 

2 1,80 3,89 7,73 10,95 12,93 

3 1,48 2,03 4,64 7,47 9,97 

4 1,37 1,67 2,93 5,11 7,40 

5 1,49 1,93 2,30 3,66 5,56 

6 1,85 2,13 2,67 2,97 4,41 

7 2,16 2,70 2,97 3,30 3,90 

8 2,49 3,18 3,63 3,97 4,08 

9 2,87 3,64 4,39 4,55 4,96 

10 3,30 4,14 4,95 5,55 5,65 

 

The first five significant circumferential 

modes (m) are in the order of 4(n=1), 3, 5, 

4(n=2), and 2 as given in Table 3. Therefore, 

it can be concluded that the behavior of the 

cooling tower is not a beam-like structure in 

which the first mode is the circumferential  

 

mode of m=1 leading to the moving of the 

cross section about an axis. Also, contraction,  

expansion, and torsional mode shape 

frequencies for m=0 are the largest 
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frequencies as given in Table 3. The curves 

on Figure 4 for the first 10 harmonics reflect 

an interesting behavior such that frequencies 

decrease with increasing circumferential 

mode number, m until a minimum value is 

reached hereafter they increase. 

 
Figure 4. Natural frequencies with respect to circumferential mode number 

Representative circumferential mode shapes 

are shown in Figure 5. The m=0 mode 

represents uniform expansion or contraction 

of the circumference as shown in Figure 5(a), 

while m=1 corresponds to a beam-like 

bending with net translation. The higher 

modes (m>1) generates fluctuating 

displacements around the cross section as 

shown in Figure 5(c, d, e, f, g, h). These 

modes appear mostly in thin shell structures. 

Therefore, for the earthquake analysis only 

the first mode (m=1) is considered for the 

uniform horizontal ground motion.  

 

 
Figure 5. Circumferential mode shapes for a) m=0 b) m=1 c) m=2 d) m=3 e) m=4 f) m=5        

g) m=6 h) m=7 

Figure 6 depicts the first three meridional or 

longitudinal mode shapes along the z axis 

(n=1,2,3) corresponding to eight 

circumferential modes (m=1,2,3,4,5,6,7,8). 

Also, normalized radial amplitudes of  

vibration are shown in Figure 6. It can be 

easily seen that the meridional mode shapes 

(n=1,2,3) for circumferential mode shape 

(m=1) are similar to the first three mode 

shapes of a cantilever beam. 
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Normalized radial amplitudes of vibration 

 

Figure 6. Normalized meridional vibration modes n=1,2,3 for the circumferential modes (a) 

m=1 (b) m=2 (c) m=3 (d) m=4 (e) m=5 (f) m=6 (g) m=7 (h) m=8 

 

As a parametric study the curvature of the 

tower is varied by altering the shape 

parameter, K by keeping throat radius 

constant with changing characteristic 

dimension, b. The shape parameter is altered  

between 1 and 2. The height and wall 

thickness of the tower are also kept constant. 

The periods of first five modes of the cooling 

tower with variation of shape parameter (K) 

are given in Table 4.  
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Table 4. The periods of first five modes of  the cooling tower with variation in meridional 

curvature or shape parameter, K 

Shape 

parameter, K 
Mode1 Mode2 Mode3 Mode4 Mode5 

1.0 1.644 1.152 1.145 0.741 0.600 

1.2 0.685 0.622 0.545 0.540 0.520 

1.4 0.633 0.606 0.596 0.583 0.552 

1.6 0.686 0.684 0.678 0.664 0.629 

1.8 0.787 0.776 0.774 0.744 0.735 

2.0 0.891 0.887 0.865 0.857 0.810 

It can be seen from Figure 7 that increasing 

curvature causes the first five periods to 

decrease first until a certain value whereupon 

periods increase. This behavior is observed 

strongest for the fundamental period of  

vibration. Therefore, it can be said that the 

meridional curvature can significantly 

influence free vibration response of the 

tower. 

 
Figure7. The influence of shape parameter K on the periods of first five of modes 

5.4 Dynamic Analysis of the Cooling 

Tower 

Time-dependent seismic actions are 

the only dynamic load of interest in this part. 

The load is modeled in the finite element 

time history analysis using recorded ground 

accelerations and the responses are obtained 

by Newmark direct integration method. The 

transient responses of the four cooling tower  

structures with variations in throat diameters 

as given in Table 5 are investigated for 

meridional and circumferential stresses. The 

throat diameter is altered between 55.78 m 

and 40.78 m and the shape of towers are 

shown in Table 5. All other parameters are 

kept constant. Decreasing throat diameter 

increases meridional curvature of the tower 

structure. Figure 8 shows the response in 

terms of stresses along the height for these 

different curvature models. The results are 

obtained for the time step of 0.005 s when 

the maximum values are reached. As the top 

curvature increases (due to a decrease in 

throat radius), the meridional stress at the 

throat levels increases but decreases by 25% 

at the base as shown in Figure 8(a), while the 

circumferential (hoop) stress increases by 

10% at the top as shown in Figure 8(b). Also, 

it seems that the hoop stress has a tendency  

to change sign near the throat as the throat 
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Table 5. Four different models analyzed for earthquake loading 
Model K1 K2 K3 K4 

Throat 

diameter (m) 
55.78 50.78 45.78 40.78 

  Elevation 

Views 

    

diameter decreases. Moreover, the maximum 

circumferential stress increases with increase 

in curvature while the maximum meridional 

stress decreases. Thus, it can be concluded  

that the hyperbolic geometry has a significant 

influence on the earthquake stress response 

that can be optimized by changing curvature 

of the cooling tower.  

 

  

 

Figure 8. (a) Meridional and (b) circumferential stresses for along the height of the cooling 

towers with different curvatures when the maximum values are reached at θ=0 meridian. 

 

Figure 9(a, b) show the meridional and 

circumferential stress responses along the 

height of the tower at θ=0 for each time step 

during Newmark dynamic analysis. During 

the earthquake these stresses change sign. In 

other words, they carry on reversing from  

tension to compression and vice versa as 

shown in Figure 9(a, b). Dark regions in 

these figures indicate that the stresses 

intensify within small interval during the 

earthquake. 
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Figure 9. a) Meridional and b) circumferential stresses along the height of the hyperbolic 

cooling tower at θ=0
o
 meridian during Düzce earthquake for each time step. 

Figure 10 (a, b, c) depict the time histories of 

the maximum lateral (radial) displacement at 

the top, maximum meridional stress at the 

base and maximum circumferential stress at 

the top of the towers with the smallest and 

largest throat diameter examined, 

respectively.As shown the maximum values 

during earthquake are obtained at around the

 

time of maximum ground acceleration 

appeared at the 4.135 second of the record  

considered. The maximum radial 

displacement, tensional meridional and  

circumferential stresses are obtained as 63 

mm, 11506 kPa and 2300 kPa while 67 mm,  

8718 kPa and 2417 kPa respectively for the 

tower with the smallest throat diameter. 
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Conclusions  

Free vibration characteristics and 

earthquake responses of a cooling tower are 

investigated using harmonic ring finite 

elements. Additionally, the influence of 

curvature on the periods and seismic 

responses of the tower are examined by 

changing throat diameter while keeping the 

other parameters constant. Most important 

conclusions drawn from the study are as 

follows: 

 The time required for the dynamic 

analysis decreases extremely due to 

harmonic analysis by considering 

tower system as two-dimensional. 

 The frequency of lateral mode of the 

cooling tower can be found easily 

without a complete free vibration 

analysis by defining circumferential 

mode number only.   

 The natural frequencies of the cooling 

tower decrease with increasing 

circumferential mode number up to a  

minimum value after this they 

increase. 

 Increasing curvature by decreasing 

throat diameter causes the 

fundamental periods to decrease until 

a certain value of curvature 

whereupon they increase. 

 Hoop stresses at the throat level of the 

cooling tower are quite sensitive to 

the changes in curvature.  

 Maximum circumferential and 

meridional stresses are observed at 

the top and at the base of the cooling 

tower under seismic loading, 

respectively. 
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